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Sample Loads. VI. Effect of Thermal Brownian
Diffusion Plus Diffusion Due to the Second Type of
Flow Heterogeneity Occurring near the Top of

the Column
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INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE
FACULTE DES SCIENCES

PARIS 5, FRANCE

Abstract

A theory of gradient hydroxyapatite chromatography with small sample loads is
developed by taking into account the associated effect of thermal Brownian diffusion
plus diffusion due to the second type of flow heterogeneity occurring near the top of
the column. Theoretical chromatograms with slightly asymmetrical shapes similar to
those obtained experimentally can be calculated. However, this effect is small. The
earlier theory in which the effect is assumed to be infinitesimal is valid from a
practical point of view. The possibility of drastically increasing the chromatographic
resolution is suggested.

INTRODUCTION

Earlier in this series (/-5), in Part V (5), a theory of gradient hydroxy-
apatite (HA) chromatography with small sample loads was developed by
taking into account the effect of the top of the column.

At least with HA chromatography the total longitudinal diffusions in the
column are classificable into three types: thermal Brownian diffusion and two
types of diffusions provoked by two types of flow heterogeneities occurring in
the column (6). Thus, let us divide the column into a number of parallel
hypothetical columns with diameters of the order of magnitude of the
interdistances among crystals packed in the total column. It can be assumed
that, due to the heterogeneity in interstices among the crystals being packed,
the flow rate of the solution fluctuates at random not only among different
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longitudinal positions on the same microcolumn but also among parts of
different microcolumns existing within the same vertical section of the total
column. The flow heterogeneity occurring due to this mechanism is called as
the first type (6). Due to a viscous property of the solution, however, it might
be possible that the flow rate in a interstice in the column depends upon the
distance from the crystal surface. Therefore, even within a microcolumn, a
flow heterogeneity is realizable; this is called the second type of flow hetero-
geneity (6). It can be assumed, however, that the effect of the second type of
flow heterogeneity, if it occurs, is so small that it does not provoke the
heterogeneity in molecular density in the interstice between the crystals (6).
Nevertheless, the movement of the molecules in a interstice in the column
would, in general, be disturbed by the second type of flow heterogeneity (6).
Under this assumption, it is impossible to distinguish chromatographically
the molecular diffusion occurring caused by the second type of flow hetero-
geneity from thermal Brownian diffusion; the effect of Brownian diffusion
plus diffusion due to the second type of flow heterogeneity (briefly B-dif. plus
STFH-dif.; see Ref. 5) behaves as an element of the chromatographic
mechanism (6).

The effect of the column top is conceivable only in terms of the B-dif. plus
STFH-dif. effect occurring near the top of the column (5, 6). In Ref. 5 the
extreme case occurring at the limit when the B-dif. plus STFH-dif. effect
tends to zero was considered; under this situation, diffusion due to the first
type of flow heterogeneity is the only longitudinal diffusion that is realizable
in the column. In the theory in Refs. -4 also, the B-dif. plus STFH-dif.
effect is assumed to be infinitesimal [ cf. both Remark (3) in the Introduction
Section in Ref. 5§ and Remark (2) in Theoretical Section A in Ref. 6]. The
purpose of the present work is to develop a theory in which account is taken
of the finite effect of B-dif. plus STFH-dif. For this purpose it is first
necessary to reduce the fundamental continuity equation of gradient chrom-
atography (originally derived as Eq. 17 in Ref. 3 and reproduced as
Eq. A-1 in the Appendix) to a simpler form (Eq. 7). Theoretical chrom-
atograms with slightly asymmetrical shapes similar to those obtained
experimentally (with a slower decrease in height on the right-hand side of the
patiern than on the other side; see Ref. 2) can be calculated. It can be
concluded, however, that the B-dif. plus STFH-dif. effect is small; the earlier
theory (I-5) is valid from a practical point of view.

THEORETICAL

A. Approximate Form of the Fundamental Continuity Equation for
Gradient Chromatography

In Ref. 3 a fundamental continuity equation for gradient chromatography
was derived [Eq. 17 in Ref. 3 (or Eq. | in Ref. 5); reproduced as Eq. A-1 in
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the Appendix], and the initial boundary condition of this equation was
represented in terms of a delta function |[Eq. 74 in Ref. 3 (or Eq. 9 in Ref. 5)]
which can be rewritten into a more explicit form (Eq. 17 in Ref. 5), i.e.,

Cs=4+0,m)=46(m —m,) (1)

Brief explanations for any symbols involved in the equations (except those
which are defined by the equations themselves) are given at the end of the
paper. (For the symbol s in Eq. 1, see Eq. 3.) By solving the fundamental
chromatographic equation (Eq. A-1 in the Appendix) under the boundary
condition given by Eq. (1), a theoretical chromatogram represented by both
Eqgs. (62) and (73) in Ref. 3 (or Egs. 12 and 6 in Ref. 5) can be obtained. In
Ref. 5 a new interpretation was given to these equations, taking into account
the effect of the top of the column. However, provided the molarity range
over which a chromatogram appears is small around the mean elution
molarity, Egs. (62) and (73) in Ref. 3 (or Eqs. 12 and 6 in Ref. 5) reduce to a
single equation with a Gaussian form [Eq. 8 in Ref. 4 (or Eq. 28 in Ref. 5)].
This equation can be rewritten as

flm—#(S)lz
: 2o(s))2
C(s,m)=——"e (2)
Vv2amo(s)
where
s =gL (3)
1
1 R
u(s) =—(p,—{[(x' + Do'gs + (¢'m, + 1)) =1} (4)
20,5
A -
a(s) B(s) (5)
and
_ 1
B(s) = By|u(s)] = (6)

L+glo'u(s) + 1]
It can be confirmed that Eq. (2), in fact, reduces to Eq. (1) at the limit when s
tends to +0, since u» (Eq. 4) and o (Eq. 5) tend to m;, + 0 and +0,

respectively.
In the Appendix a partial differential equation

d s 92C  1-B(s) aC  acC
a - + 7
880, {[B(s)lz} om? B(s)  om ds (7
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is derived from which Eq. (2) can be generated as a solution under the initial
boundary condition given by Eq. (1). It can be considered that Eq. (7) is an
approximate form of Eq. (A-1) (for details, see the Appendix). It is important
to note that, under a more general boundary condition:

C(s =+0,m)=Cym) (8)
Equation (7) has a solution

lm=m+min=p(s))?

2[o(s))2

1 A
C(s,m)=T—l Co(m’)e dm’ (9)
\//2770'(3) «

(cf. Eq. A-11 in the Appendix). It can be confirmed that, if Co(m’) reduces
to the delta function (Eq. 1), then Eq. (9) reduces to Eq. (2).

B. Theoretical Chromatogram under the Effect of Brownian
Diffusion Plus Diffusion Due to the Second Type of Flow
Heterogeneity Occurring Near the Top of the Column

Within a small width
AL = 48, (10)

near the top of the column, the effect of the first type of flow heterogeneity
(see Introduction Section) is negligible and molecules are performing
random motions receiving the B-dif. plus STFH-dif. effect (5, 6). We
consider below the case of small sample loads (1) when the width in the
initial molecular band at the column top is smaller than, or equal to, AL, and
(2) when the partition, B, of molecules in solution occurring in any column
section within AL is very small. The latter is a necessary condition for
molecules to be initially retained on the column (5, 6).
Introducing a new parameter

s' =5+ 4gf, (11)

Eq. (9) can be rewritten as

C(s, m) =C(s' — 4g0y, m)

[m *m'+minf;1(x'—4g00)]2

1 = 20o(s'—4g8) |2
- [ Co(m')e TR e
vano(s' — 4g90) *
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The reason why Eq. (9) has been rewritten as Eq. (9') will be understood
later. Based on the second point of view on gradient chromatography (3, 5),
Eq. (9) or (9') is simply representing the molecular distribution in the
abstract flux migrating on the abstract m-coordinate system. s is proportional
to time ¢ provided the flow rate is constant with respect to ¢ (3, 5). From the
first point of view (3, 5), however, s is proportional to the longitudinal
distance L from the top of the column (see Eq. 3). m represents the molarity
of competing ions in solution at column position L. If the position L coincides
with the bottom of the column, m is the molarity of the ions in solution that
have just been eluted out of the column (3, 5). m — m,, therefore, is
proportional to time ¢ provided the flow rate is constant with respect to ¢
(3, 5).

Let us consider the part L > 490 of the total column as a subcolumn. The
top of the subcolumn therefore coincides with position L = 48, of the total
column. Let us also consider that s is the parameter that is concerned with the
subcolumn. Based on the first point of view under this consideration, s should
be defined, instead of as in Eq. (3), as

s=g(L — 48 (12)

where L is still the distance from the top of the total column, It is therefore s’
(Eq. 11) that now is proportional to L, which leads to the relationship

s'=gL (13)

From the second point of view, however, it is s (defined by Eq. 12), and not s’
that is proportional to ¢.

At position L =48, on the total column or the top of the subcolumn
[where s" = 4gf, (Eq. 13) and s = 0 (Eq. 12)], a relationship given by Eq.
(27) in Ref. 5 is fulfilled. In the second point of view, Eq. (27) in Ref. 5,
therefore represents the initial distribution Cy(m) (Eq. 8) in the abstract flux
concerning the subcolumn and occurring at time 0 when s = 0. We can
therefore write

r(m)

1 d 408
Com) = Artm) % e m = my)

=0 (form <my,)

where r(m) is defined by Eq. (A-19) in the Appendix as
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r(m)=fm—BMl——dm' (15)
min 1 — By(m’)

|cf. Remark (1) below].

The theoretical chromatogram for the column with length L > 48, or s’ >
4g0, can be calculated if Eq. (14) is substituted into Eq. (9'). It should be
emphasized that the chromatogram is a concept that is concermned with
the total column and not with the subcolumn. Further, the chromato-
gram itself is conceivable only from the first point of view (3, 5). Therefore,
let us represent a chromatogram by C'(s, m) instead of by C(s' — 4gf,, m)
(cf. Eq. 9'). C'(s’, m) (when s’ = 4g8,) can now be written as

1 j'“ 1 dr(m’)

C'(s' = 4gly, m) =

Vv2mo(s' — 4gf,) Imin 4g8, dm’
rm) ) |m—m’+minfu(s’—4g00)]2
48y 20a(s'~ 4gfg))2

Xe
1

vZma(s' — 4g6y)

{ [m+min n(4gBop)-n(s' —4g8g))? }
an - p‘
2[0(:'—45'00)]2
f ; dp (16)
o

where the second equality has been obtained from both substitution of
p = r(m')/(4gf,) and consideration of the fact that, generally if r(u') ='s,
then p* = u(s) (cf. Egs. A-18 and A-20 in the Appendix). This means that if
rim') = 4glyp, then m' = u(4gh,p).

It should be noted that the function C'(s’, m) calculated from Eq. (16)
takes finite values even when m < m,,, whereas the chromatogram should
actually appear only in the molarity range of m = m,,. This inconsistency
arises from the fact that Eq. (16) has been derived by using both the first and
second equalities in Eq. (14) whereas it is only the first one that involves the
physical meaning and the second equality has been added only for con-
venience sake [see the explanation of Eq. 27 in Ref. § that corresponds to Eq.
14; cf. Remark (1) below]. As in Ref. 5, an interpretation should now be
introduced that, in Eq. (16), it is only the part m = m;, of C’ that has the
physical meaning. The other part, m <m,,, that formally occurs in Eq. (16)
actually should occur at the beginning, m = m,,, of the molarity gradient
forming a sharp peak. The peak gradually disappears in the early stages of the
development process [cf. Remark (2) below].

When 0 <L < 4f8,0r0<s' < 4g0,, then on the basis of a consideration
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similar to that used for the derivation of the first equality in Eq. (14) [i.e., the
first equality in Eq. 27 in Ref. §; cf. Remark (1) below], we can derive

r(m)

1 dr(m) s
C'(0<s'<4gly m)=— e (17)
s dm

Remark (1). Equations (14) and (15) can be compared with Egs. (27) and
(26) in Ref. 5, respectively. In the latter two equations, the expression r is
used instead of the expression r(m) in the former two. The reason is
mentioned in Ref. 5. In Eqs. (14) and (15) the expression r(m) can be used.
This is because the concept of local molarity, m, (5), does not appear in the
approximate chromatographic equation, Eq. (7).

Remark (2). The ‘‘development process’ on the column is a concept
captured from the first point of view on gradient chromatography. “Early
stages,” therefore, mean chromatographic stages when the longitudinal
distance of the mean part of the molecular band migrating on the column to
the column top still is small, provided that the length of the column is large
enough for the mean part of the band to exist on the column at the instant
under consideration. For details, see Ref. 5, Theoretical Section B, for the
special case when 8 = 0 is argued. The argument is valid independent of the
value of 8y, however.

Some Numerical Calculations and the Relationship
with the Experiment

Equation (12) shows that, among parameters s, g, and L, it is a pair that
are independent provided f, is given. Experimentally, it is common practice
that the pair (g, L) a priori is given. The chromatogram C’ (Egs. 16 and 17)
is obtained as a function of m. It is therefore convenient first to rewrite Egs.
(16) and (17) into forms in which both parameters g and L are explicitly
involved. Calling f as this expression of C’, f can be expressed as

{m+min—p(4g8o0)—ulg(L—48g)])2
1 ) {p 2otg.L))? }
fim,g, L 2 4fp) = ——————— | ¢ dp
Vv2ma(g, L)
and (18)
_ r(m)
1 dr(m) e 6

m:g,0<L <48,)=—
S g 0) oL dm
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where

L q
=/ L — 48 1+ ;
R R o e ] oo
(cf. Eqs. 4-6 and 12),

The continuous curve in Fig. 1 [reproduced from the left-hand pattern in
Fig. 5(b) in Ref. 2] illustrates a theoretical chromatogram for lysozyme,
calculated from both Eqs. (62) and (73) in Ref. 3 (or Eqs. 12 and 6 in Ref. 5);
Eq. (62)in Ref. 3 (or Eq. 12 in Ref. 5) represents the solution of Eq. (A-1)in
the Appendix (see Theoretical Section A). On the abscissa in Fig. 1, the
suffix (K*) attached to the variable m represents the fact that the competing
ions (/-5) that constitute the molarity gradient is potassium, and that the m
value is concerned with potassium. The same suffix will also appear in Figs.
2-4, For any symbols appearing in text, the suffix (K*) is omitted for
simplicity, however. Now, for calculation in Fig. 1, it is assumed that the B-
dif. plus STFH-dif. effect is infinitesimal, i.e., that §,=0 cm (cf. Intro-
duction Section). Provided that §, = 0 cm, then even the effect of the
existence itself of the column top is negligible under the experimental
conditions that are applied (for the effect of the existence itself on the column

80
Pt
60 A
f
401
20 -
O T T T
014 016 018 020
m(K+)(M)

Fi1G. 1. Continuous curve: Theoretical chromatogram for lysozyme as a function of potassium
molarity, m+), calculated from both Eqs. (62) and (73) in Ref. 3 (or Egs. 12 and 6 in Ref. 5)
under the experimental conditions of L = 55 cm, gk +) = 4.239 X 10 “4M/cm, and Ming+y =
0.0015 M, where the suffix (K1) indicates that the parameters are concerned with potassium
ions from the buffer. For the calculation it is assumed: ¢’ =9 M~} 8y=0cm, 65=0.3 cm,
x' =17, and In ¢ = 6.7. (Reproduced from the left-hand pattern in Fig. 5 b in Ref. 2.) Dotted
curve: Approximate Gaussian chromatogram, calculated from Eq. (2). The centers of gravity
and the lower and upper limits of the chromatographic peaks are shown also; these are
essentially the same for the two chromatograms.
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top, see Ref. 5). For the other experimental parameters the best values have
been used, x' and In g characterizing the lysozyme molecule (for detail, see
the legend of Fig. 1 and Ref. 2). The dotted curve in Fig. 1 represents the
approximate Gaussian chromatogram calculated from Eq. (2). It can be seen
in Fig. 1 that the approximate chromatogram is essentially identical with the
chromatogram calculated from the solution of Eq. (A-1) (i.e., Eqs. 62 and 73
in Ref. 3 or Egs. 12 and 6 in Ref 5). The corresponding experimental
chromatogram is shown in Fig. 6(b) in Ref. 2. It can be seen in Fig. 6 in Ref.
2, however, that, in comparison with theoretical chromatograms, experi-
mental chromatograms, in general, are slightly asymmetrical with a slower
decrease in height on the right-hand side of the pattern than on the other side.

Figure 2 shows that, if the finite effect of B-dif. plus STFH-dif. is taken
into consideration, asymmetrical theoretical chromatograms similar to those
obtained experimentally can be calculated. Thus, Figs. 2(a), (b), and (c)
illustrate theoretical chromatograms calculated from Eq. (18) by using the
value 0.005 cm for the parameter 90 that measures this effect. The experi-
mental conditions in any part of Fig. 2 are the same as those in Fig. | (see
above), and the dotted vertical line in any part of Fig. 2 shows the position of
the center of gravity of the theoretical chromatogram(s) in Fig. 1. This can be
assumed to be a best position (2). In Fig. 2(a) the same values are used as in
Fig. 1 for the experimental parameters ¢, 8, x', and In ¢. It can be seen in
Fig. 2(a), however, that, due to the finite value of 8, that has been introduced
above, the mean position of the chromatogram is slightly displaced to the
right in comparison with the case of 8, =0 cm (dotted vertical line). The
width in the chromatographic peak becomes slightly too large in comparison
with a best width (see Fig. 1). A best position of the chromatogram is
obtained if a slightly smaller value, 6.6, of In ¢ is assumed (Fig. 2b). A best
width in the chromatogram can be obtained by using a smaller value, 0.2 cm,
of 8,. Thus a best final chromatogram (under the assumption of §, = 0.005
cm) is derived (Fig. 2¢). It can be seen in Fig. 2(c) that the chromatogram, in
fact, is slightly asymmetrical with a slower decrease in height on the right-
hand side of the pattern than on the other side as in the experimental
chromatogram (see Fig. 6 in Ref. 2).

Figures 2(d), (e), and (f) illustrate theoretical chromatograms with 90 =
0.01 cm that correspond to those in figs. 2(a), (b), and (¢}, respectively. Thus
the values of the experimental parameters that are assumed in Fig. 2(d) are
the same as those assumed in both Figs. 2(a) and 1 with ,= 0.3 cm and In
g = 6.7. In Fig. 2(e) a slightly smalier value, 6.5, of In g is assumed in order
to obtain a best mean position of the chromatographic peak. In Fig. 2(f) a
further change in the @, value to 0.1 cm is made to obtain a best width in the
chromatogram. By comparing Fig. 2(f) (best theoretical chromatogram
attainted under the assumption of 8, = 0.01 c¢m), Fig. 2(c) (best chromato-
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F1G. 2. Theoretical chromatograms for lysozyme as functions of potassium molarity, mg+),
calculated from Eq. (18) by taking into account the finite effect of B-dif. plus STFH-dif. The
centers of gravity and the lower and upper limits of the chromatographic peaks are also shown.
The experimental conditions are the same as those in Fig. 1. The dotted vertical lines show the
position of the center of gravity of the theoretical peak in Fig. 1, which can be assumed to be a
best position. For calculations, it generally is assumed: ¢’ =9 M~ and x' = 7; these are
assumptions common to those involved in Fig. 1. The other assumptions depend upon the parts
of the figure with 8= 0.005 cm, 5= 0.3 ¢cm, and In g = 6.7 in (a); 8 = 0.005 cm, #= 0.3
cm, and Ing = 6.6 in (b); 8= 0.005 cm, 8= 0.2 cm, and In ¢ = 6.6 in (¢); §¢ = 0.01 cm,
#=0.3 cm, and In ¢ = 6.7 in (d), 90= 0.01 cm, 83=10.3 cm, and In ¢ = 6.5 in (e); and
90= 0.01 cm, 8p=0.1 cm, and In g = 6.5 in (f). Parts (c) and (f) are best chromatograms
obtained under assumptions of 8 = 0.005 c¢m and 90 = 0.01 cm, respectively. For details, see
text.

gram under the assumption of §, = 0.005 cm) and Fig. 1 (best chromatogram
under the assumption of 90= 0 cm), it can be understood that the sym-
metricity in the chromatographic peak decreases with an increase in the 8,
value. It is difficult, however to estimate the exact #, value by comparing the
shape of the theoretical chromatograms (Figs. 1, 2c, and 2f) with the
experimental result (Fig. 6 in Ref. 2), since the shape of the experimental
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chromatogram fluctuates considerably depending upon the experiment.
Figure 6 in Ref. 2 shows only typical experimental results.

It can be deduced, however, that the actual 90 value, at most, is of the order
of magnitude of 0.005 cm. Thus points of any part of Fig. 3 are experimental
plots of In s vs elution molarity, m,,,, at the center of gravity of lysozyme
chromatographic peaks for three different slopes, g, of the potassium molarity
gradients that are applied which have been reproduced from Fig. A2 in Ref.
2, Appendix II. The curve in Fig 3a (also reproduced from Fig. A2 in Ref. 2,
Appendix II) is theoretical, calculated from Eq. (4) on the basis of the
assumption of #, = 0 cm. The values of the experimental parameters that are
used for the calculation are the same as those used in Fig. 1. The curves in
both Figs. 3b and 3c are theoretical, calculated from Eq. (18) by taking into
account finite 8, values 0.005 and 0.01 cm, respectively. The values of the
experimental parameters that are used for the calculations of Figs. 3b and 3¢
are the same as those assumed in Figs. 2(c) and (f), respectively. The
theoretical curves in Figs. 3b and 3c are virtually independent of the 8, value,
however. (In Eq. 4, from which the theoretical curve in Fig. 3a has been
calculated, the paremeter 8, is not involved at all.) It can be seen in Fig. 3
that, if §, = O cm, the theoretical curve is independent of the slope g of the
molarity gradient (part a). If ) is finite, however, the curve depends upon the
g value. As a result, three theoretical curves are obtained for three different
£’s that are applied (Figs. 3b and 3c). With an increase in 8, the split among
the three curves becomes more prominent (compare Fig. 3b with Fig. 3c). It
is difficult, however, to find in Fig. 3 the dependence of the experimental
(m 4, In s) plot upon g. Taking into account fortuitous fluctuations in the
experimental plot, it would be possible to conclude from Fig. 3 that the actual
8, value is, at most, of the order of magnitude of 0.005 cm.

In Fig. 1 in Ref. 2 are plotted standard deviation of lysozyme experimental
chromatograms (corresponding to the experimental points in Fig. 3) vs length
L of the column for the three slopes g of the molarity gradient occurring in
Fig. 3. The corresponding theoretical curves, calculated from Eqs. (62) and
(73)in Ref. 3 (or Eqs. 12 and 6 in Ref. 5; Eq. 62 in Ref. 3; or Eq. 12 in Ref.
5 is the solution of Eq. A-1 in the Appendix) on the basis of the assumption
of 8, = 0 cm, are also plotted in Fig. 1 in Ref. 2. The theoretical curves have
been calculated from Eq. (18), taking into account the finite 8, effect. Here,
again, good fits with the experiment have been obtained only when 8, is
smaller than or, at most, of the order of magnitude of 0.005 cm.

Finally, Fig. 4 illustrates typical theoretical chromatograms for lysozyme
on columns with several small lengths L calculated from Eq. (18). The sharp
peak that should appear at m = m,, (Theoretical Section B) is not illustrated
in the figure except when L = 48, = 0.02 cm (cf. Remark below). Except for
the column length, the experimental conditions that are assumed in Fig. 4 are
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Fi1G. 3a. Points: Experimental plots of In s+ versus elution molarity, m .,k +), at the center
of gravity of lysozyme chromatographic peaks for three different slopes, g i +), of the potassium
gradient. It can be seen that all points are arranged making essentially a single array in spite of
the three different gk +)’s that are applied. Curve: Theoretical curve calculated from Eq. (4) on
the basis of the assumption of o= 0 cm, which is independent of the g+ valuc. It also is
assumed ¢’ = 9M ™! x’ =7, and Ing = 6.7. (Reproduced, with modifications, from Fig. A2 in
Ref. 2, Appendix 11.)

the same as those assumed in both Figs. 1 and 2 with g = 4,239 X 107*
M/cm and m,, = 0.0015 M. The values of the experimental parameters that
are used for the calculation of Fig. 4 are the same as in Fig. 2(c). Equation
(18) shows that, if L tends to zero, then the chromatogram tends to an
infinitesimal peak appearing at m = m;,. Figure 4 shows that, with an
increase of L, the width in the chromatographic peak begins to increase.
After the first increase, however, it decreases with an increase of L (see Fig.
4). It can be shown that the width in the peak again increases with an increase
in L when L attains the order of magnitude of 50 ¢cm. In both Refs. 2 and §
the parallel conclusion has been obtained on the basis of the assumption of
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F1G. 3b: Points: As in Fig. 3a. Curves: Theoretical curves calculated from Eq. (18) assuming
90 = 0.005 c¢m. It also is assumed ¢' = 9 ML fp=0.2cm,x’=7,and In ¢ = 6.6 (the same
assumptions as those involved in Fig. 2 c). The curves are virtually independent of the § value,
however.

the infinitesmal B-dif. plus STFH-dif. effect (see Figs. 1 and 2 in Ref. 2 and
Fig. 1 in Ref. 5).

Remark. At the limit when L tends to 490 (= 0.02 cm), the first and
second equalities in Eq. (18) coincide with each other. From the structure of
the second equality in Eq. (18), it can be understood that, when L < 490,
then the total chromatogram, including the “sharp peak’ occurring at
m = m,,, can be calculated. In this instance, however, the “sharp peak’ (at
m = m,) cannot practically be distinguished from the other part of the
chromatogram, since the total chromatogram begins abruptly at m = m,;, and
the height of it decreases monotonically with an increase of m whenm > m,,
(see the pattern for L = 0.02 cm in Fig. 4). When L > 48, the chromato-
gram begins to migrate toward high m values with an increase of L (see Fig.
4). It can be assumed (see Theoretical Section B), however, that a part of the
total chromatogram remains at molarity, m = m,,, of the ions forming a sharp
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F1G. 3¢c: Points: As in Fig. 3a. Curves: As Fig. 3b but under the assumption of90 = 0.01 cm;
the other assumptions that are made are ¢’ = 9 M~ !, 8p=0.1cm,x' =7,and Ing = 6.5 (the
same assumptions as those involved in Fig. 2 f). The curves are virtually independent of the §,
value, however. For details, see text.

peak. This peak gradually disappears with an increse in L (sec below). In
Fig. 4, only the part of the total chromatogram from which the sharp peak at
m = m,, is eliminated is shown. No detailed information on the shape of the
sharp peak can be obtained from the present theory (see Ref. 5, Theoretical
Section B). However, by measuring the area under a theoretical pattern in
Fig. 4, the proportion of the actual chromatogram that should be occupied by
the sharp peak at m = m;, can be estimated. The smaller the area, the larger
should be the proportion occupied by the peak. Thus Fig. 4 shows that this
proportion decreases with a decrease in height in the theoretical pattern
occurring at m = m;,. Therefore, it is only when L is smaller than, or of the
order of magnitude of, 0.1 cm that the sharp peak should virtually appear in
the actual chromatogram (see Fig. 4). When L < 1 cm, the peak does not
exist any more, and the chromatogram in Fig. 4 should virtualily represent the
total actual chromatogram.



13:43 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. VI 351

180

160

L=0.02f(cm)
140 ~

120

100 +

80

60 A

40-

0.025{cm)

0.1 (em)

20 A

0

T T T T T T
of 002 004 006 008 010 0.2
mMinkh m (gt (M

Fi1G. 4. Theoretical chromatograms for lysozyme on columns with several small lengths, L,
calculated from Eq. (18); the sharp peak that should appear at m = my;, is not illustrated except
when L = 464 =0.02 cm. Except for the column length, the experimental conditions that are
assumed are the same as thosc assumed in both Figs. 1 and 2 withg g +y= 4.239 X 1074 M/cm
and mjy g +y=0.0015 M. the values of the experimental parameters that are used for the
calculations are the same as in Fig. 2(¢) with ¢’ = 9M~, f5=0.2cm, 90 =0.005¢cm,x' =17,
and In ¢ = 6.6. For details, see text.

DISCUSSION

The thermal Brownian diffusion coefficient of lysozyme is about 1.1 X
107% cm?/s (7). Assuming that the flow rate of the solvent on a HA column
with a diameter of 1 cm is 0.5 mL/min (see Ref. /, Introduction Section), it
can, therefore, be estimated that the contribution of the Brownian diffusion
effect to the parameter 8, is about 10 “cm. This is only about 2% of the
maximum possible value, 0.005 cm, of90 (see Some Numerical Calculations
and the Relationship with the Experiment Section). Provided 8, = 0.005 cm,
the effect of Brownian diffusion is therefore virtually negligible within the
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total effect of B-dif. plus STFH-dif. If 8, is much smaller, the contribution of
Brownian diffusions to the B-dif. plus STFH-dif. effect should be important.
In this instance, however, the B-dif. plus STFH-dif. effect itself is negligible
in comparison with the effect of diffusion due to the first type of flow
heterogeneity. Therefore, at any rate, the effect of longitudinal Brownian
diffusion should be negligible with HA chromatography. In Ref. / the
assumption of a quasistatic chromatographic process was introduced with
HA chromatography. This arises from the experimental fact that virtually no
deformation of the chromatogram or the change in elution position occurs
when the flow rate is changed (see Ref. /, Introduction Section). The con-
clusion derived above that the effect of longitudinal Brownian diffusion is
negligible is consistent with the assumption of the quasi-static process. Since
even the total effect of B-dif. plus STFH-dif. is small with 8, < 0.005 cm, the
earlier theory (/-5) and several predictions made on the basis of that thcory
(2, 4, 5) can be considered to be valid from a practical point of view.

Since the total longitudinal diffusion on the column is essentially due to
diffusion provoked by the first type of flow heterogeneity (see above), it can
be expected that the chromatographic resolution will drastically increase if
the effect of the first type of flow heterogeneity can be eliminated. In Ref. 6,
Theoretical Section D, it was mentioned that the first type of flow hetero-
geneity cannot be realized near the top of the column due to its mechanism. It
can therefore be suggested that the effect of diffusion due to the first type of
flow heterogeneity can be eliminated experimentally if a series of thin plates
that are connected to one another by capillary tubes are used instead of a
single column with the same total length. The chromatographic resolution
might drastically increase.

APPENDIX

Here, a differential equation (Eq. 7) is derived from which Eq. (2) can be
generated as a solution under the initial boundary condition given by Eq. (1).
Equation (2) originally was derived as an approximate form of the solution
(obtained under the boundary condition of Eq. 1) of the fundamental
continuity equation of gradient chromatography [Eq. 17 in Ref. 3 (or Eq. 1 in
Ref. 5); cf. Ref. 4. This equation can be rewritten as

—_—
1 — B(s, 4
div,,,[ (. m) &% grad, ] +9C€
B(s, m) B(s, m) B(s, m) ds
(A-1)

The approximation that has been used for the derivation of Eq, (2) from the
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solution [Eqs. 62 and 73 in Ref. 3 (or Egs. 12 and 6 in Ref. 5)] of Eq. (A-1)is
that the molarity range over which a chromatogram appears is small around
the mean elution molarity . This means (4) that the partition B, (Eq. 6) or
B( Eq. A-1) of molecules in solution or the mobile phase is essentially
constant within the band of molecules migrating on the column. This is
essentially equal to the partition occurring, provided the molarity of the ions
is u. It can be considered that, if the same approximation is applied to Eq.
(A-1) itself, the differential equation from which Eq. (2) can be generated as
a solution can be derived. Thus, under this assumption, B in Eq. (A-1) should
be a function of only s since B is a function of only u (see above) and u is a
function of s (Eq. 4). Equation (A-1) should therefore be reduced into a form
0, 9%¢ A 4 °C + oC A-2
§00P(s) om? (s) om ds ( )
The forms of both functions ®(s) and ¥(s) will be determined below (1) by
solving Eq. (A-2) under the boundary condition of Eq. (1), and (2) by
comparing the solution with Eq. (2). However, let us first derive a solution of
Eq. (A-2) under a more general boundary condition given by Eq. (8) or

C(s = +0,m) = Cym) (A-3)

where C is any function. Thus, introducing Fourier transformations,

F(C)=U(s, My = —— f e~MmC(s, m) dm (A-4)
\’/2TT o
[ ac
Fl—| =iMU(s, M) (A-5)
L om
and
[ o2C
F|—| =-MU(s, M) (A-6)
Ldm
Equation (A-2) is transformed into
R . oU
—g0 M D(s)U = iMY(s) U +a— (A-7)
s
from which
(A-8)

U(S M) — F(M)e—f'B|g0OM2¢(.v)+iM\l/(:)ld.v
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is obtained where F is any function. Since, on the other hand,

Colm) = _j “emMU(0, M) dM = __j “emME(MYdM (A-9)

\ 2T V2T

we have

1 -
F(M)=\Q_n Le"“"'co(m')dm' (A-10)

which, with Eq. (A-8), leads to the final solution:

: / MU (s, m) dM
€ s, m
vV ZTT -

\/"ZT - 2T b

eiM[m—_/'i)\y(s)ds—mw dM} dm

C(s, m) =

A

[m—./‘a‘l’(s)ds—m'lz

4g90A/.S®(s)ds ,
= f Co(m')e 0 dm

4 Of(D
g (s)ds (A-11)

For the derivation of the extreme right-hand side of Eq. (A-11), the fact that
the total integral, e * 2 gz (where z = x -+ iy), along the four sides of a
rectangle on the complex xy-plane is zero has been utilized (Cauchy
theorem). One of the sides of the rectangle coincides with the x-axis, and the

rectangle is symmetrical around the y-axis. Especially when C(m’) is given
by the delta function (Eq. 1) or when

Co(m') =38(m" — my,) (A-12)
Eq. (A-11) reduces to

[ B [m f.s\y(l')d.ﬁ’__?linlz

aybp] s

C(s, m)— — ' (A-13)

/4Trg0 [¢(9)ds



13:43 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. VI 355

Comparing Eq. (A-13) with Eq. (2),

f\P(s)dsw(s)—mm (A-14)
0

and

5 s
d(s)ds =—— A-15
j; (s)ds (Bs)’ ( )

are obtained, from which

Y(s) = ) (A-14")
ds
and
o(s) = —2 { ° } (A-15")
ds [B(s)]?

are derived respectively.
_ We finally show that du(s)/ds (Eq. A-14') can be represented in terms of
B(s) (see eq. 6) as

du(s) _ 1 — B(s) (A-16)
ds B(s)

Thus, when 6,—+0, then Eq. (A-13) further reduces to
C(s, m) = 8[m — u(s)] (A-17)

(cf. Eq. A-14) showing that a sharp molecular band with infinitesimal width
is formed at molarity:

p=pu(s) (A-18)

On the other hand, u’ originally is defined by Eq. (A-23)in Ref. I, Appendix
II, as

s=r(u)] l_j;“(li,,)du" (A-19)

Equation (A-19) can also be derived from both Egs. (4) and (6). Equations
(A-18) and (A-19) show that

s = rlu(s)) (A-20)
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from which
dr dp
= — A-21
du ds ( )
is obtained. This leads to
d 1 1—-B 1 — B(s
pis) _ _ Mu(s) _ (s) (A-22)
ds dr/dp By u(s)] B(s)

(cf. Egs. A-19 and 6), which is Eq. (A-16) itself. Equation (A-16) can also
be derived directly from Eqs. (4) and (6).

By substituting Egs. (A-14") and (A-15') into Eq. (A-2), and taking into
account Eq. (A-16), Eq. (7) can be obtained.

CandC’

SYMBOLS

mean molarity of competing ions in solution within the last
infinitesimal vertical section at the bottom of the column, or the
solution that has just been eluted out of the column. m increases
linearly with increase in elution volume V" with linear gradient
chromatography. The chromatogram is represented as a func-
tion of m. In some instances, m also represents the mean ion
molarity in solution within any vertical section of the column.
initial molarity of competing ions at the beginning of the
molarity gradient introduced at the top of the column.

length of the column. In some instances, L also represents any
longitudinal position on the column, i.e., the distance from the
column top.

positive constant representing the slope of the molarity gradient
of competing ions in the column. This is expressed as an
increase in mean ion molarity m (in solution within a column
section) per unit column length, measured from the bottom to
the top.

concentrations of sample molecules (under consideration) in a
solution that has just been eluted out of the column. In some
instances, C also represents the mean molecular concentration
in solution within any vertical section of the column. C’, as a
function of m, represents a chromatogram.

chromatogram, i.e., an expression of C' in which both
parameters g and L are explicitly involved.

positive constant characterizing the competing ion.
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x" and g positive constants characterizing the sample molecule.
6, positive constant with a dimension of length that measures the
total longitudinal molecular diffusions in the column, i.e.,
diffusions due to the first and second types of flow hetero-
geneities and thermal Brownian diffusion.
6, positive constant with a dimension of length that measures the
longitudinal effect of B-dif. plus STFH-dif.
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